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Power-law tails in nonstationary stochastic processes with asymmetrically multiplicative
interactions
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We consider stochastic processes where randomly chosen particles with positive quanfiti€ interact
and exchange the quantities asymmetrically by the xUtec{(1-a)x+by}, y’ =d{ax+(1-b)y} (x=Yy), where
(0=<)a,b(=<1) andc,d(>0) are interaction parameters. Noninteger power-law tails in the probability distribu-
tion function of scaled quantities are analyzed in a similar way as in inelastic Maxwell models. A transcen-
dental equation to determine the growth ratef the processes and the exponenif the tails is derived
formally from moment equations in Fourier space. In the casgor a+b=1(a+ 0, 1), the first-order moment
equation admits a closed form solution ap@dnds are calculated analytically from the transcendental equa-
tion. It becomes evident that et d, exchange ratb of small quantities is irrelevant to power-law tails. In the
casec#d anda+b+# 1, a closed form solution of the first-order moment equation cannot be obtained because
of asymmetry of interactions. However, the moment equation for a singular term formally forms a closed
solution and possibility for the presence of power-law tails is shown. Continuity of the expowithtrespect
to parameters,b,c,d is discussed. Then numerical simulations are carried out and campared with the theory.
Good agreement is achieved for bogrands.
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[. INTRODUCTION stochastic process is one candidate to explain the laws
%13,19]. In economic phenomena, the Matthew efféitte

A mechanism of power-law emergence has been taken Beh gets richer and the poor gets poorelays an important
strong interest for many researchers because of its ubiquit gets . poor gets pe Y< P
ole, which results in asymmetry in interactions. Ispolagbv

in nature. A number of attempts have been developed to ex- . AL .
plain the advent of various power-law distributiofis-d], al. [20] have discovered that a power-law distribution with

Recently, inelastic Maxwell modeldMM's ) [5—7] have The pur o%e of )t/his al egr i's to study a model myasg mmetri- .
been studied extensively and provides a new mechanism of purp pap y y

power laws. In IMM's, randomly chosen particles undergocaIIy multiplicative interactions and to clarify the influence

binary inelastic collisions and noninteger power-law tails ap-Of asymmetry. Note that the model includes IMMS-7],

pear in the probability distribution functia®DF) of particle symmetirically multiplicative interactiofSMI) model [8],

velocities. This processes are described by the Boltzman%nd _greedy multiplicative exchang&ME) model [20] as
special cases.

equation with a velocity independent collision rate and are The paper is organized as follows. In Sec. Il, we begin

analytically tractable. The moment equations of IMM's form with introducing the model. The Fourier transform of the

a closed set which is able to be solved sequentially as @Master equation is performed. PDF is assumed to be sum of
initial value problem. A nontrivial power-law exponent the re ulgr term ang the sin l.JIar term. Then, a transcenden-
which is the function of a dissipation parameter is dmer'tal e Sation is derived fromgthe sin uiar terr'ns In Sec. I
mined from a transcendental equation. This power law dif-th d th ratev of th gd th : y .
fers from usual critical phenomena in one major point that € growth ratey of the processes and theé power-1aw expo
the system has a power-laregion rather than a ciritical nents of tails are discussed in three cases land Il. In case

oint. Therefore fine-tuning of parameters is not necessarI and I', y and s are computed explicitly by solving the
P gorp Yranscendental equation. In case Il, moment equations do not

and the power law is easy to be observed inside the regio]%rm a closed set, angt ands cannot be calculated analyti-
everywhere. ben-Avrahaet al. [8] extended IMM to a sym- cally. Thus numerical simulations are performed. The good

metrically linear collision rule. agreement between the theory and simulations is achieved
On the other hand, power laws are widely observed ir] 9 X . y :
n the last section, we discuss our results.

social and economic phenomef@-13. It is well known
that wealth distributions such as capitals and incomes obey a
power law in high-wealth range, which is called Pareto’s law
[9,14-17. It is also recognized that the si&of cities sat-
isfies power law 1% in the cumulative distribution function, Let us consider the stochastic processes that distinguishes
that is, Zipf's law[10,13,18. A multiplicatively interacting o particles in the manner of the magnitude of quantity

asymmetrically: When a particle of positive quantd>0)

interact with a particle of quantity(>0), post-interaction

*Electronic address: fujihara@yokohama-cu.ac.jp quantitiesx’ andy’ are given by

Il. TRANSCENDENTAL EQUATION
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(x’)_(c(l—a) cb )(x) _ L '
v)™Uda da-p/ly x=y), 1) y

where O<a, b=<1, andc, d>0 are interaction parameters
representing amplification rates and exchange rates of larg
and smaller quantities, respectively. Two particles are se
lected randomly. There are two trivial casgs a=b=0 or
a=b=1,(ii) a=0,b=1 ora=1,b=0. In the former case, two
particles experience no interactions and PDF becomes log - d(1-b)x - day
normal. In the latter, one particle ends up taking all the quan
tity and the others having null quantities. Hereafter we omit
these cases.

The normalized distribution functiori(z,t) obeys the
master equation

z - chx - ¢(l-a)y =0 y—x

z - c(l-a)x - cby — 0

z- dax - d(1-b)y =0

FIG. 1. Integral lines in Eq(2).

(9f ,t ® o
(z,t) f(z,t):J dyf dxf(x,t)f(y,t) X {8(z-[c(1 -a)x . | |
ot 0 y (2) is performed by changing variablgs=x-y, q=y and
ing the f |
+chy]) + 8(z—[dax+d(1 -b)y]}. ) using the formula
" o 1
The integration is performed along the solid line illustrated fo dpd“P = 78(k) + IP'V'E'

in Fig. 1. The kink aty=x stems from asymmetry of the
model. The Fourier transforrg(k,t)=[;dzé*f(z,t) of Eq.  where P.V. means the Cauchy principal value. It follows that

2 (k) + glk, ) = 5[0(e(1 -2k, Do(chkt) + g(dakg(d(L - bk ]

i - ! 1 ! !
- 2—P.V.f_m dk T —a)kg(k bDo(c(l-a+bk-kK,t)

i - ! 1 ! !
—ZP.V.f_xdk 0K Dg(d@+ 1-b)k =K. (3)

The P.V. terms on the right-hand sitRHS) of Eq. (3) come N - N .
from the integration of kinked lines, and represent asymme-An(t) = [C {(1-a)"+b"+d¥a"+(1-b)h] -1
try of the model. Nextg(k,t) is expanded as

R ( ) )
1- bn |
C2min mn(t),% fe'd-a)
gkt =1 +E ) (4) -
n! +d"a(1 - b)”"}P.Vf dk' = 9 gV, )g" (=K' 1),
- : (6)
wherem(t) = [3dzZ' [(z,t) is the nth order moment. Even
though the moment equations do not form a closed set gen-
erally, they can be derived formally as whereg®(k,t) denotes théth order deirivative
d 1n—1 n - (ik)"
M0 = Ny == ( ){C“(l -a)'b™ gk ) =i ——mp(0). (7)
dt 213\ = N

+d"a(1 -b)"m()m,(t) (n= 1),
(5) In realx-y space, the pseudoeigenvalugt) is expressed as
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()= 511 -+ b7} + el + (1))~ 1

_} 1 : n N1 _ a\lxn-|
2mn(t)§,<l>{c (1-ayb

+d"a(1 - b)”"}f dyf dx(x'y""!
0 y

—YX" Dy, b). 8
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the moment equations do not form a closed set in the pres-
ence of the integral terms of E@8). In IMM and SMI,
however, the integral terms vanish. Thereforgjs constant
and the moment equatioiiS) form a closed set.

We are interested in similarity solutions of the form

{f(z,t) =MW,

gk,t) =d(n),

wherevy is the growth ratéscaling parametgof the system,
and é=ze ™ and n»=ke" are scaled variables. The scaled

9

Since f(x,t) includes information of all-order of moments, PDF ®(7) satisfies

dd(7)
T dy

Here we assume that the functidr( ) is described by the
sum of the regular and singular components

D(n) = (I)regulan( n) + (I)singulal( 7)), (11)
q)regular(n) =1+ @Mna (12
n=1 N

Dginguial ) =C exp(— i%s sgr(n))F(— sl7°, (13

where w, is the nth order moment ofb(7), s a noninteger
exponent,C the normalization constant](-s)(s=0) the
gamma function, and s@n) the signature of;. The form of
the singular component Eq13) is given by the Fourier
transform ofW(£)=C/ &S, The leading smally behavior of
the singular componenbg,guaf 7) ~ | 7I° reflects the tail of
the scaled PDMV(&) ~ 1/ as&— oe. Substituting Eq(11)
into Eqg. (10), we obtain relations

O(7n) — ylezg[c(l—a+ b) +d(a+1-b)]

+%(c—d)(1—a—b)A—1, (14
n 1”_1 n n I{n=1
0(7/)—>(n7—>\n)ﬂn=52 | {c"1-a)b
I=1
+da(1-b)" Y  (0=2),
(15

1
+@(n) = J[P(c(1-2)n)P(cby) + P(dan)P(d(1 -b)7)]
i N ’ 1 ’ _ o
- ZTP.V.f_wdk m@(ﬂ YP(c(l-a+b)yyp—17')

i * 1
- —P.V.f dk' —
2 o n -

O(7')P(d@+1-b)n-17). (10

dazy

O(7°) — ys=\s={c(1-a)}*+{da}°*~1,  (16)

where

1 <] o0
A=— dfzf dé (& - E)W(EP(E) (0<A<])
M1Jo &
(17

and the eigenvalug,, is given by
1
M=l -a) b da+ (1-b))] - 1

_}iz (n){cn(l_a)lbn—l +dnal(1_b)n—|}
2:UvnI:O I

X f dé, j dé (687 - EENW(E)V(E). (18)
0 &

In the process of deriving Eq16), we use a convergence
condition; ®(7) — 0(| | — ) and the formulae to calculate
regular-singular integrals

P.V.f d»’'

= tar<%5> ™ Sgr(a"?)|a77|sq)regulan(,877) )

7 - a7]| 77’|SCI)reguIaA((‘1' +B)n—7')
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* 1
P-V-f dy’ sgn 77,)| 77,|S(I)regular((a +B)n—7")

N —ap
s
== Co‘(?) 7T|a77|s¢)regulap(ﬁ77)- (19
In the caluculation of deriving moment equations, singular- ¢

singular integrals are able to be neglected because the higer-
order singular terms in Fourier space are less singular in real
space. That is, it is possible to linearize the moment equa-
tions for the singular term, which is the key ingredient of
derivation. Notice that moment equatio(is?) and (15) for
regular parts can be directly derived from the master equa-
tion (2) without recourse to Fourier transform.

The transcendental equation of the model with asym-
metrically multiplicative interactions is formally obtained  FIG. 2. Phase diagram of the exponetit the casee=d. Solid
from Eqgs.(14) and(16) by eliminating y curves denote contours of Powder-law tails disappear in the

hatched region surrounded by dashed curves.

Ns={c(l-a)*+{da}®*-1 (s>1). (20

When Eq.(20) has a nontrivial solution in &s=<1, the sin- s e S e \

gular component dominates over the regular one because of ~ 1¢(1 @)} In (c(1-a) +{ca}*In cas) ~ 1

the divergence of all the moments. Therefore the parameter

is not determined by Eq14). As originally reported by ben- (Osss1). (23
Avraham et al. [8] instead, y takes the minimum value,

which is realized \gvhen Te lings comes into contact with | shoyid be emphasized that the transcendental equation, the
the curve{c(1-a);*+{daj*~1. Consequently, the transcen- growth ratey, and the exponens are independent ob,

dental equation in the case<(s<1 becomes exchange rate of smaller quantities. When amplification rates
e e of larger and smaller quantities are saffee=d), only ex-
{c(1-a)}® In(—s> +{da}® In( S) =1 change of larger quantities determine similarity properties of
{c(1 -a)} {da} processes. Although Eq®2) and(23) are formally same as
(0ss<1). (21) those for symmetric interactioris=d,a=b) [8], the physical

meaning of the parametersis completely different. A phase
diagram fors is illustrated in Fig. 2. Power-law tails exist
IIl. GROWTH RATE AND EXPONENT outside the hatched region. Inside the reg®djverges and
power-law tails disappear. The exponentvaries continu-
In this section, the growth ratg of the processes and the ously as a function of parametesisc. The diagram is sym-
exponent of power-law tails are investigated. Three cases | metric with respect to the lina=0.5. The two points=1,
I’, and Il are discussed separately in accordance with tha=0, andc=a=1 are singular points where the transcenden-
type of the transcendental equation. Equatittd) tells us  tal equations become identities. Actually, these points corre-
that the first-order moment equation admits a closed fornspond to greedy multiplicative exchangéME) processes
solution and the first-order eigenvalig becomes constant and the exponerstis given by zerd20]. In the limita— 0 or
in the casec=d (1) anda+b=1 (a#0,1) (I'), while it does a—1, s also goes to zero at# 1, which suggests that the
not otherwisg(ll). When), is constant,y ands can be cal- casesa=0 anda=1 for arbitrary values ot belong to the
culated analytically, which are done in Secs. Ill A and Il B. same universality class as GME. In the Appendix, we show
Case Il is treated in Sec. Il C. In this case, explicit calcula-this analytically.
tion of y and s becomes impossible a&>1. When 0<s
=<1, on the contrary, the selection of the minimum growth
rate leads to the irrelevance ®f in determiningy ands. In B. Case I a+b=1(a#0,])
this situation, therefore, the transcendental equation is given
by Eq.(21) and y ands are computed analytically. First, the
continuity ofs ats=1 is discussed. Then, numerical simula-
tions are carried out and compared with the theory.

At a+b=1, \y=c(l-a)+da-1 and the transcendental
equation becomes

{c(1-a)+da-1s={c(1-a)}*+{da}*-1 (29

A. Case I: c=d

for s>1. The equation for &s=<1 is given by Eq.(21).
Cross-sectional phase diagrams at figefdr s are plotted in
Fig. 3. Boundaries between the regions with and without
(c-Ds={c(1-a)}*+{ca*-1(s>1), (22) power-law tails are described by three curves

When c=d, first-order eigenvalue\; is given byc-1.
Then, the transcendental equation reads
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FIG. 4. (Color online Growth ratesy calculated through Eq.

6 ) ' ' (14) and those simulations at=1.5 andd=0.5. The number of
particles in simulations id=10° and number of interactions i§
5 0.6 1 =50N.
4 0.8 1 T — l+e) 2+€( o= T i
5=1 we setW (&) =(1+e)L "¢/ &r4(s=1+¢€), whereW (&) is a nor-
2 /s 15 malized power-law PDF and is a lower cutoff in order to
c 3 ’ T avoid the divergence of the integral. We obtain

j dé, f dé(& - LV (E)V(E)
L §2
A=

| f dégw ()
L

. . . 1 : 1
®) a T 142

—~1 (e—0). (26)

FIG. 3. Phase diagram of the exponerih the casea+tb=1 at  Thus
d=0.5(a) andd=1.5(b). Solid curves denote contours £fPower-

law tails disappear in the hatched region surrounded by dashed As1=Ns1=C(1-a)+da-1. (27)
CUrves. This fact indicates is continuous and satisfies Ed.6) iden-
tically at s=1.
1 21 _1-da o5 In the general case,<0A=<1 and the transcendental equa-
€= 1-a’ a= d €= 1-a (25 tion (16) has two nontrivial solutionss; <1 ands,>1 gen-

] o erally. Ernst and Britg6] considered the case and argued
Therefore the area without power-law tails is unboundedngat each solution has a different role. Thatsisis a expan-
whend=<1, while it is bounded whed> 1. Asymmetry be-  sjon variable and, controls the singularity of the tail
tweenc andd gives rise to asymmetry of phase diagrams.

o (i7"
D(7) =1+ pun+ pe,m?. (28)
C. Case ll: c#d and a+b#1 p=1 M

In this case, the first-order moment equatitd) does not  We find one more reason to explain whky determines the
allow a closed form solution. However a transcendentapower-law tail. In the limitc—d or a+b—1, s;—1, and
equation can be derived formally and possibility for the pres-s,—s. Assumption thas is a continuous function of param-
ence of power-law tails can be shown. The results are givestersa,b,c,d leads to the conclusion thaf corresponds to a
by Egs.(14) and(16). The value ofA in Eq. (17) cannot be  nontrivial solution in the cases | and. |
obtained analytically. Therforg ands are unable to be cal- Now we compare the theory and numerical simulations.
culated ats>1. When Oss<1 and the selection of the The value ofA is computed numerically. Then the growth
minimum growth rate takes place, all af(i=1) are irrel-  rate y and the exponers, (ands,) are calculated via Egs.
evant andy ands are determined from Eq21). (14) and (16). Obtained results are compared with those of

First we discuss the continuity sfa,b,c,d) ats=1. Sup-  simulations in Figs. 4 and 5. We find that E¢$4) and(16)
pose that the power-law tail dominates in determiningnd  old well.
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OF — ' " X ' e ity for the existence of non-integer power-law tails in PDF. It
becomes evident that wharrd, the exchange parametber
of small quantities is irrelevant to power-law tails. In the
general case+ d anda+b+ 1, the growth ratey, the expo-
nents, and PDF are determined consistently via Ed<l)
and (16). The exponens turns out to be a continuous func-
tion of parameters,b,c,d.

This model is applicable to many kinds of asymmetrically

log,[& F(€) ]
IS

simulation

P I R theory (s,) \ interacting processes such as particle systems and biological
_____ theory (s)) \ phenomena. The most important would be wealth distribu-
k tions in economic systems, where the Matthew effect gives
sk i rise to asymmetry of interactions. The model is quite general
5 : 0 : S if terms are replaced as “particle® “agent,” “quantity” —

“capital” or “income,” and “interact”— “trade” or “deal.”
Power laws are widely observed in economic phenomena
0 i i , [11,12. Some of them might be explained by this model.

a

5}
g
N
A
o

APPENDIX: GENERAL GREEDY EXCHANGE

o PROCESSES
;w 2F Ispolatovet al.[20] have reported that greedy multiplica-
= tive exchange processes where0 and the rich always gets
< ) ) richer exhibit a power-law behavior 2/in PDF. They ref-
31 ::;1;1;?:1; ered only to the case=d=1, but as discussed in the case I,
theory (s.) the tail 1/zwith s=0 is also realized at# 1 andd # 1. Here
at we extend their approach to general greedy exchange pro-
cessesa=0,c#1,d#1 and examine the condition for
L L ! ! f(z,t) < 1/z. The master equation is
-4 2 0 2
b lo zlc(1-a) _ _
(b) 210&) of(z,t) :—f(z,t)+i dxf(x,t)f(z c(1 a)x,t)
FIG. 5. Double logarithmic plot ofW¥(¢) versusé ata=0.05(a) CbJ zc(1-a+b) cb
anda=0.2 (b). Other parameters are given by0.9, c=1.5, and 1 Zda 7 - dax
d=0.5. Number of particles isl=10° and number of interactions is + dxf(x,t)f(—,t). (A1)
T=50N. Dashed and dash-dotted lines are house of the sipaed d(1-b)J yqcar1-b) d(1-b)
s1, which are determined from the transcendental equation. In the limit of a— 0, Eq. (A1) reduces to
zlc
IV. SUMMARY AND DISCUSSIONS f(z,t) = f(zt) + i de(X,t)f(Z CXJ)
In this work, we have investigated asymmetrically multi- dt CDJ z10(1+b) cb
plicative interactiongAMI) processes analytically and nu- 1 7 o
merically. The model includes greedy multiplicative ex- + ( t)J dxf(x,t).
change(GME) model[20], inelastic Maxwell mode{IMM) d1-b) \d(1-b)" /Jza-0)
[5-7], and symmetrically multiplicative interaction&MI) (A2)
ﬁ]r(}caebsl,:elg] as special cases. The relations are Summanzalg’erforming the transformatiofz—cx)/cb— x and using the

In the processes of deriving the transcendental equatiofiormalization conditiorygdxf(x,t)=1, we have
we encounter the fact that the first-order moment equation Iz) Zc(1+b) 1 {z-cbx
does not admit a closed form solution generally. However, it ————= :f dxf(x,t) —f(—,t) - f(zt)
c c

is possible to linearize singular terms. Thus we can formally ot 0
construct the transcendental equation and show the possibil- o
-f(z1) dxf(x,t)
TABLE I. Relation between AMI and other models. Zc(1+b)
del ! - f( 2 t)f dxf(x,t)
Mode Interaction parameters ) X1(X,1).
i d1-b) \d1-b)"/ )yt

GME c=d:1,a=0 (A3)

IMM c=d=1,a=b

SMI c=d. a=b In the limit a— 0, divergent terms vanishes and the solution

of Eq. (A3) is obtained by
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— l 0 T T T T T

fzh=2 D (A4)

ot (d(l—b))'
In

c

Equation(A4) shows that the conditiod(1-b)/c<1 is nec-
essary to ensurf(z,t)=0. It becomes evident that the con-
dition that general greedy exchange processes has the distri-

[ TRy T

log;o[ & ¥(9) ]

bution 1/z is given by -4 .
—o— ¢=1.0
d(1-b)<c. (A5) I =15
We find that the conditioiA5) is always satisfied at=d. =2.0
Next, we estimate the lower and upper cutaffsz, of the or 7
distribution Eq.(A4) in order to maintain the normalization 20 20 o
condition of PDF’s. The moments are evaluated as log,&)
[rawa- ol s
mp(t) ~ dzf(zt)~—In[—=)=1, FIG. 6. (Color onling Double logarithmic plot oW (&) versus
7 t 4 ¢ ata=0.0,b=0.9, andd=0.5. Number of particles ifl=10° and

number of interactions i$=50N.

my(t) ~ fzz dzzfzt) ~ %(zz -2z =my(0)e”™.

“ The distribuitons¥(¢) < 1/¢ is observed for several tens or-

Using z,>2), we get der of magnitude. It should be emphasized that in the case
my(0) 1o my(0) " c>. 1,. the tallls withs>0 appear asymptot.|cally§—>oo). .
z~—te » D te”. (A6)  with increasingc, s decreases and fluctuations grow. This

indicates that the tails come from fluctuation due to amplifi-
We have carried out numerical simulations of generalcation of large quantities. However, detailed analysis of the
greedy exchange processes. The results are shown in Fig. tails remains for a future work.
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