
Power-law tails in nonstationary stochastic processes with asymmetrically multiplicative
interactions

Akihiro Fujihara,* Toshiya Ohtsuki, and Hiroshi Yamamoto
Graduate School of Integrated Science, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan

(Received 16 April 2004; published 21 September 2004)

We consider stochastic processes where randomly chosen particles with positive quantitiesx,ys.0d interact
and exchange the quantities asymmetrically by the rulex8=chs1−adx+byj, y8=dhax+s1−bdyj sxùyd, where
s0ø da,bsø1d andc,ds.0d are interaction parameters. Noninteger power-law tails in the probability distribu-
tion function of scaled quantities are analyzed in a similar way as in inelastic Maxwell models. A transcen-
dental equation to determine the growth rateg of the processes and the exponents of the tails is derived
formally from moment equations in Fourier space. In the casec=d or a+b=1saÞ0,1d, the first-order moment
equation admits a closed form solution andg ands are calculated analytically from the transcendental equa-
tion. It becomes evident that atc=d, exchange rateb of small quantities is irrelevant to power-law tails. In the
casecÞd anda+bÞ1, a closed form solution of the first-order moment equation cannot be obtained because
of asymmetry of interactions. However, the moment equation for a singular term formally forms a closed
solution and possibility for the presence of power-law tails is shown. Continuity of the exponents with respect
to parametersa,b,c,d is discussed. Then numerical simulations are carried out and campared with the theory.
Good agreement is achieved for bothg ands.
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I. INTRODUCTION

A mechanism of power-law emergence has been taken a
strong interest for many researchers because of its ubiquity
in nature. A number of attempts have been developed to ex-
plain the advent of various power-law distributions[1–4],
but underlying physics has not been clarified yet.

Recently, inelastic Maxwell models(IMM’s ) [5–7] have
been studied extensively and provides a new mechanism of
power laws. In IMM’s, randomly chosen particles undergo
binary inelastic collisions and noninteger power-law tails ap-
pear in the probability distribution function(PDF) of particle
velocities. This processes are described by the Boltzmann
equation with a velocity independent collision rate and are
analytically tractable. The moment equations of IMM’s form
a closed set which is able to be solved sequentially as an
initial value problem. A nontrivial power-law exponent
which is the function of a dissipation parameter is deter-
mined from a transcendental equation. This power law dif-
fers from usual critical phenomena in one major point that
the system has a power-lawregion rather than a ciritical
point. Therefore fine-tuning of parameters is not necessary
and the power law is easy to be observed inside the region
everywhere. ben-Avrahamet al. [8] extended IMM to a sym-
metrically linear collision rule.

On the other hand, power laws are widely observed in
social and economic phenomena[9–13]. It is well known
that wealth distributions such as capitals and incomes obey a
power law in high-wealth range, which is called Pareto’s law
[9,14–17]. It is also recognized that the sizeS of cities sat-
isfies power law 1/S in the cumulative distribution function,
that is, Zipf’s law [10,13,18]. A multiplicatively interacting

stochastic process is one candidate to explain the laws
[13,19]. In economic phenomena, the Matthew effect(the
rich gets richer and the poor gets poorer) plays an important
role, which results in asymmetry in interactions. Ispolatovet
al. [20] have discovered that a power-law distribution with
the exponent of unity in PDF arises in multiplicative pro-
cesses of greedy exchange, where the rich always gets richer.
The purpose of this paper is to study a model of asymmetri-
cally multiplicative interactions and to clarify the influence
of asymmetry. Note that the model includes IMM’s[5–7],
symmetirically multiplicative interaction(SMI) model [8],
and greedy multiplicative exchange(GME) model [20] as
special cases.

The paper is organized as follows. In Sec. II, we begin
with introducing the model. The Fourier transform of the
master equation is performed. PDF is assumed to be sum of
the regular term and the singular term. Then, a transcenden-
tal equation is derived from the singular terms. In Sec. III,
the growth rateg of the processes and the power-law expo-
nents of tails are discussed in three cases I, I8, and II. In case
I and I8, g and s are computed explicitly by solving the
transcendental equation. In case II, moment equations do not
form a closed set, andg ands cannot be calculated analyti-
cally. Thus numerical simulations are performed. The good
agreement between the theory and simulations is achieved.
In the last section, we discuss our results.

II. TRANSCENDENTAL EQUATION

Let us consider the stochastic processes that distinguishes
two particles in the manner of the magnitude of quantity
asymmetrically: When a particle of positive quantityxs.0d
interact with a particle of quantityys.0d, post-interaction
quantitiesx8 andy8 are given by*Electronic address: fujihara@yokohama-cu.ac.jp
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Sx8

y8
D = Scs1 − ad cb

da ds1 − bd
DSx

y
D sx ù yd, s1d

where 0øa, bø1, andc, d.0 are interaction parameters
representing amplification rates and exchange rates of larger
and smaller quantities, respectively. Two particles are se-
lected randomly. There are two trivial cases(i) a=b=0 or
a=b=1, (ii ) a=0, b=1 or a=1, b=0. In the former case, two
particles experience no interactions and PDF becomes log-
normal. In the latter, one particle ends up taking all the quan-
tity and the others having null quantities. Hereafter we omit
these cases.

The normalized distribution functionfsz,td obeys the
master equation

]fsz,td
]t

+ fsz,td =E
0

`

dyE
y

`

dxfsx,tdfsy,td 3 hd„z− fcs1 − adx

+ cbyg… + d„z− fdax+ ds1 − bdyg…j. s2d

The integration is performed along the solid line illustrated
in Fig. 1. The kink aty=x stems from asymmetry of the
model. The Fourier transformgsk,td=e0

`dzeikzfsz,td of Eq.

(2) is performed by changing variablesp=x−y, q=y and
using the formula

E
0

`

dpeikp = pdskd + iP.V.
1

k
,

where P.V. means the Cauchy principal value. It follows that

]

]t
gsk,td + gsk,td =

1

2
fg„cs1 − adk,t…gscbk,td + gsdak,tdg„ds1 − bdk,t…g

−
i

2p
P.V.E

−`

`

dk8
1

k8 − cs1 − adk
gsk8,tdg„cs1 − a + bdk − k8,t…

−
i

2p
P.V.E

−`

`

dk8
1

k8 − dak
gsk8,tdg„dsa + 1 −bdk − k8,t…. s3d

The P.V. terms on the right-hand side(RHS) of Eq. (3) come
from the integration of kinked lines, and represent asymme-
try of the model. Next,gsk,td is expanded as

gsk,td = 1 + o
n=1

`
sikdn

n!
mnstd, s4d

wheremnstd;e0
`dzznesz,td is the nth order moment. Even

though the moment equations do not form a closed set gen-
erally, they can be derived formally as

d

dt
mnstd − lnstdmnstd =

1

2o
l=1

n−1 Sn

l
Dhcns1 − adlbn−l

+ dnals1 − bdn−ljmlstdmn−lstd sn ù 1d,

s5d

lnstd =
1

2
fcnhs1 − adn + bnj + dnhan + s1 − bdnjg − 1

−
i

2pin
1

mnstdol=0

n Sn

l
Dhcns1 − adlbn−l

+ dnals1 − bdn−ljP.V.E
−`

`

dk8
1

k8
gsldsk8,tdgsn−lds− k8,td,

s6d

wheregsldsk,td denotes thelth order deirivative

gsldsk,td = i lo
n=0

`
sikdn

n!
ml+nstd. s7d

In realx-y space, the pseudoeigenvaluelnstd is expressed as

FIG. 1. Integral lines in Eq.(2).
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lnstd =
1

2
fcnhs1 − adn + bnj + dnhan + s1 − bdnjg − 1

−
1

2

1

mnstdol=0

n Sn

l
Dhcns1 − adlbn−l

+ dnals1 − bdn−ljE
0

`

dyE
y

`

dxsxlyn−l

− ylxn−ldfsx,tdfsy,td. s8d

Since fsx,td includes information of all-order of moments,

the moment equations do not form a closed set in the pres-
ence of the integral terms of Eq.(8). In IMM and SMI,
however, the integral terms vanish. Therefore,ln is constant
and the moment equations(5) form a closed set.

We are interested in similarity solutions of the form

H fsz,td =e−gtCsjd,

gsk,td =Fshd,
J s9d

whereg is the growth rate(scaling parameter) of the system,
and j=ze−gt and h=kegt are scaled variables. The scaled
PDF Fshd satisfies

gh
dFshd

dh
+ Fshd =

1

2
fF„cs1 − adh…Fscbhd + FsdahdF„ds1 − bdh…g

−
i

2p
P.V.E

−`

`

dk8
1

h8 − cs1 − adh
Fsh8dF„cs1 − a + bdh − h8…

−
i

2p
P.V.E

−`

`

dk8
1

h8 − dah
Fsh8dF„dsa + 1 −bdh − h8…. s10d

Here we assume that the functionFshd is described by the
sum of the regular and singular components

Fshd = Fregularshd + Fsingularshd, s11d

Fregularshd = 1 + o
n=1

`
sihdn

n!
mn, s12d

Fsingularshd = C expS− i
ps

2
sgnshdDGs− sduhus, s13d

wheremn is the nth order moment ofFshd, s a noninteger
exponent,C the normalization constant,Gs−sdssù0d the
gamma function, and sgnshd the signature ofh. The form of
the singular component Eq.(13) is given by the Fourier
transform ofCsjd=C/j1+s. The leading small-h behavior of
the singular componentFsingularshd,uhus reflects the tail of
the scaled PDFCsjd,1/j1+s asj→`. Substituting Eq.(11)
into Eq. (10), we obtain relations

Oshd → g = l1 =
1

2
fcs1 − a + bd + dsa + 1 −bdg

+
1

2
sc − dds1 − a − bdA − 1, s14d

Oshnd → sng − lndmn =
1

2o
l=1

n−1 Sn

l
Dhcns1 − adlbn−l

+ dnals1 − bdn−ljmlmn−l sn ù 2d,

s15d

Oshsd → gs= ls = hcs1 − adjs + hdajs − 1, s16d

where

A =
1

m1
E

0

`

dj2E
j2

`

dj1sj1 − j2dCsj1dCsj2d s0 , A ø 1d

s17d

and the eigenvalueln is given by

ln =
1

2
fcnhs1 − adn + bnj + dnhan + s1 − bdnjg − 1

−
1

2

1

mn
o
l=0

n Sn

l
Dhcns1 − adlbn−l + dnals1 − bdn−lj

3E
0

`

dj2E
j2

`

dj1sj1
l j2

n−l − j2
l j1

n−ldCsj1dCsj2d. s18d

In the process of deriving Eq.(16), we use a convergence
condition; Fshd→0suhu→`d and the formulae to calculate
regular-singular integrals

P.V.E
−`

`

dh8
1

h8 − ah
uh8usFregular„sa + bdh − h8…

= tanSps

2
Dp sgnsahduahusFregularsbhd,
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P.V.E
−`

`

dh8
1

h8 − ah
sgnsh8duh8usFregular„sa + bdh − h8…

= − cotSps

2
DpuahusFregularsbhd. s19d

In the caluculation of deriving moment equations, singular-
singular integrals are able to be neglected because the higer-
order singular terms in Fourier space are less singular in real
space. That is, it is possible to linearize the moment equa-
tions for the singular term, which is the key ingredient of
derivation. Notice that moment equations(14) and (15) for
regular parts can be directly derived from the master equa-
tion (2) without recourse to Fourier transform.

The transcendental equation of the model with asym-
metrically multiplicative interactions is formally obtained
from Eqs.(14) and (16) by eliminatingg

l1s= hcs1 − adjs + hdajs − 1 ss. 1d. s20d

When Eq.(20) has a nontrivial solution in 0øsø1, the sin-
gular component dominates over the regular one because of
the divergence of all the moments. Therefore the parameterg
is not determined by Eq.(14). As originally reported by ben-
Avraham et al. [8] instead,g takes the minimum value,
which is realized when the linegs comes into contact with
the curvehcs1−adjs+hdajs−1. Consequently, the transcen-
dental equation in the case 0øsø1 becomes

hcs1 − adjs lnS e

hcs1 − adjsD + hdajs lnS e

hdajsD = 1

s0 ø sø 1d. s21d

III. GROWTH RATE AND EXPONENT

In this section, the growth rateg of the processes and the
exponents of power-law tails are investigated. Three cases I,
I8, and II are discussed separately in accordance with the
type of the transcendental equation. Equation(14) tells us
that the first-order moment equation admits a closed form
solution and the first-order eigenvaluel1 becomes constant
in the casec=d (I) anda+b=1 saÞ0,1d sI8d, while it does
not otherwise(II ). Whenl1 is constant,g ands can be cal-
culated analytically, which are done in Secs. III A and III B.
Case II is treated in Sec. III C. In this case, explicit calcula-
tion of g and s becomes impossible ats.1. When 0øs
ø1, on the contrary, the selection of the minimum growth
rate leads to the irrelevance ofl1 in determiningg ands. In
this situation, therefore, the transcendental equation is given
by Eq. (21) andg ands are computed analytically. First, the
continuity of s at s=1 is discussed. Then, numerical simula-
tions are carried out and compared with the theory.

A. Case I: c=d

When c=d, first-order eigenvaluel1 is given by c−1.
Then, the transcendental equation reads

sc − 1ds= hcs1 − adjs + hcajs − 1 ss. 1d, s22d

hcs1 − adjs lnS e

hcs1 − adjsD + hcajs lnS e

hcajsD = 1

s0 ø sø 1d. s23d

It should be emphasized that the transcendental equation, the
growth rateg, and the exponents are independent ofb,
exchange rate of smaller quantities. When amplification rates
of larger and smaller quantities are samesc=dd, only ex-
change of larger quantities determine similarity properties of
processes. Although Eqs.(22) and(23) are formally same as
those for symmetric interactionssc=d,a=bd [8], the physical
meaning of the parametersis completely different. A phase
diagram fors is illustrated in Fig. 2. Power-law tails exist
outside the hatched region. Inside the region,s diverges and
power-law tails disappear. The exponents varies continu-
ously as a function of parametersa,c. The diagram is sym-
metric with respect to the linea=0.5. The two pointsc=1,
a=0, andc=a=1 are singular points where the transcenden-
tal equations become identities. Actually, these points corre-
spond to greedy multiplicative exchange(GME) processes
and the exponents is given by zero[20]. In the limit a→0 or
a→1, s also goes to zero atcÞ1, which suggests that the
casesa=0 anda=1 for arbitrary values ofc belong to the
same universality class as GME. In the Appendix, we show
this analytically.

B. Case I8: a+b=1„aÅ0,1…

At a+b=1, l1=cs1−ad+da−1 and the transcendental
equation becomes

hcs1 − ad + da− 1js= hcs1 − adjs + hdajs − 1 s24d

for s.1. The equation for 0øsø1 is given by Eq.(21).
Cross-sectional phase diagrams at fixedd for s are plotted in
Fig. 3. Boundaries between the regions with and without
power-law tails are described by three curves

FIG. 2. Phase diagram of the exponents in the casec=d. Solid
curves denote contours ofs. Powder-law tails disappear in the
hatched region surrounded by dashed curves.
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c =
1

1 − a
, a =

1

d
, c =

1 − da

1 − a
. s25d

Therefore the area without power-law tails is unbounded
whendø1, while it is bounded whend.1. Asymmetry be-
tweenc andd gives rise to asymmetry of phase diagrams.

C. Case II: cÅd and a+bÅ1

In this case, the first-order moment equation(14) does not
allow a closed form solution. However a transcendental
equation can be derived formally and possibility for the pres-
ence of power-law tails can be shown. The results are given
by Eqs.(14) and (16). The value ofA in Eq. (17) cannot be
obtained analytically. Therforeg ands are unable to be cal-
culated ats.1. When 0øsø1 and the selection of the
minimum growth rate takes place, all oflisi ù1d are irrel-
evant andg ands are determined from Eq.(21).

First we discuss the continuity ofssa,b,c,dd at s=1. Sup-
pose that the power-law tail dominates in determiningA and

we setC̃sjd=s1+edL1+e /j2+ess=1+ed, whereC̃sjd is a nor-
malized power-law PDF andL is a lower cutoff in order to
avoid the divergence of the integral. We obtain

A >
E

L

`

dj2E
j2

`

dj1sj1 − j2dC̃sj1dC̃sj2d

E
L

`

djjC̃sjd

=
1

1 + 2e
→ 1 se → 0d. s26d

Thus

ls=1 = ls→1 = cs1 − ad + da− 1. s27d

This fact indicatess is continuous and satisfies Eq.(16) iden-
tically at s=1.

In the general case, 0,Aø1 and the transcendental equa-
tion (16) has two nontrivial solutions,s1,1 ands2.1 gen-
erally. Ernst and Brito[6] considered the case and argued
that each solution has a different role. That is,s1 is a expan-
sion variable ands2 controls the singularity of the tail

Fshd = 1 + o
n=1

`
sihs1dn

n!
mn + ms2

hs2. s28d

We find one more reason to explain whys2 determines the
power-law tail. In the limitc→d or a+b→1, s1→1, and
s2→s. Assumption thats is a continuous function of param-
etersa,b,c,d leads to the conclusion thats2 corresponds to a
nontrivial solution in the cases I and I8.

Now we compare the theory and numerical simulations.
The value ofA is computed numerically. Then the growth
rate g and the exponents2 (and s1) are calculated via Eqs.
(14) and (16). Obtained results are compared with those of
simulations in Figs. 4 and 5. We find that Eqs.(14) and(16)
old well.

FIG. 3. Phase diagram of the exponents in the casea+b=1 at
d=0.5 (a) andd=1.5 (b). Solid curves denote contours ofs. Power-
law tails disappear in the hatched region surrounded by dashed
curves.

FIG. 4. (Color online) Growth ratesg calculated through Eq.
(14) and those simulations atc=1.5 andd=0.5. The number of
particles in simulations isN=106 and number of interactions isT
=50N.
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IV. SUMMARY AND DISCUSSIONS

In this work, we have investigated asymmetrically multi-
plicative interactions(AMI ) processes analytically and nu-
merically. The model includes greedy multiplicative ex-
change(GME) model [20], inelastic Maxwell model(IMM )
[5–7], and symmetrically multiplicative interactions(SMI)
processes[8] as special cases. The relations are summarized
in Table I.

In the processes of deriving the transcendental equation,
we encounter the fact that the first-order moment equation
does not admit a closed form solution generally. However, it
is possible to linearize singular terms. Thus we can formally
construct the transcendental equation and show the possibil-

ity for the existence of non-integer power-law tails in PDF. It
becomes evident that whenc=d, the exchange parameterb
of small quantities is irrelevant to power-law tails. In the
general casecÞd anda+bÞ1, the growth rateg, the expo-
nent s, and PDF are determined consistently via Eqs.(14)
and (16). The exponents turns out to be a continuous func-
tion of parametersa,b,c,d.

This model is applicable to many kinds of asymmetrically
interacting processes such as particle systems and biological
phenomena. The most important would be wealth distribu-
tions in economic systems, where the Matthew effect gives
rise to asymmetry of interactions. The model is quite general
if terms are replaced as “particle”→ “agent,” “quantity” →
“capital” or “income,” and “interact”→ “trade” or “deal.”
Power laws are widely observed in economic phenomena
[11,12]. Some of them might be explained by this model.

APPENDIX: GENERAL GREEDY EXCHANGE
PROCESSES

Ispolatovet al. [20] have reported that greedy multiplica-
tive exchange processes wherea=0 and the rich always gets
richer exhibit a power-law behavior 1/z in PDF. They ref-
ered only to the casec=d=1, but as discussed in the case I,
the tail 1 /z with s=0 is also realized atcÞ1 anddÞ1. Here
we extend their approach to general greedy exchange pro-
cessesa=0,cÞ1,dÞ1 and examine the condition for
fsz,td~1/z. The master equation is

]fsz,td
]t

= − fsz,td +
1

cb
E

z/cs1−a+bd

z/cs1−ad

dxfsx,tdfXz− cs1 − adx
cb

,tC
+

1

ds1 − bdEz/dsa+1−bd

z/da

dxfsx,tdfX z− dax

ds1 − bd
,tC . sA1d

In the limit of a→0, Eq. (A1) reduces to

]fsz,td
]t

= − fsz,td +
1

cb
E

z/cs1+bd

z/c

dxfsx,tdfSz− cx

cb
,tD

+
1

ds1 − bd
fS z

ds1 − bd
,tDE

z/ds1−bd

`

dxfsx,td.

sA2d

Performing the transformationsz−cxd /cb→x and using the
normalization conditione0

`dxfsx,td=1, we have

]fsz,td
]t

=E
0

z/cs1+bd

dxfsx,tdF1

c
fSz− cbx

c
,tD − fsz,tdG

− fsz,tdE
z/cs1+bd

`

dxfsx,td

+
1

ds1 − bd
fS z

ds1 − bd
,tDE

z/ds1−bd

`

dxfsx,td.

sA3d

In the limit a→0, divergent terms vanishes and the solution
of Eq. (A3) is obtained by

FIG. 5. Double logarithmic plot ofjCsjd versusj at a=0.05(a)
and a=0.2 (b). Other parameters are given byb=0.9, c=1.5, and
d=0.5. Number of particles isN=106 and number of interactions is
T=50N. Dashed and dash-dotted lines are house of the slopes2 and
s1, which are determined from the transcendental equation.

TABLE I. Relation between AMI and other models.

Model Interaction parameters

GME c=d=1, a=0

IMM c=d=1, a=b

SMI c=d, a=b
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fsz,td =
D

zt
, D =

− 1

lnSds1 − bd
c

D . sA4d

Equation(A4) shows that the conditionds1−bd /c,1 is nec-
essary to ensurefsz,tdù0. It becomes evident that the con-
dition that general greedy exchange processes has the distri-
bution 1/z is given by

ds1 − bd , c. sA5d

We find that the condition(A5) is always satisfied atc=d.
Next, we estimate the lower and upper cutoffsz1, z2 of the

distribution Eq.(A4) in order to maintain the normalization
condition of PDF’s. The moments are evaluated as

m0std , E
z1

z2

dzfsz,td ,
D

t
lnSz2

z1
D = 1,

m1std , E
z1

z2

dzzfsz,td ,
D

t
sz2 − z1d = m1s0degt.

Using z2@z1, we get

z1 ,
m1s0d

D
tesg−1/Ddt, z2 ,

m1s0d
D

tegt. sA6d

We have carried out numerical simulations of general
greedy exchange processes. The results are shown in Fig. 6.

The distribuitonsCsjd~1/j is observed for several tens or-
der of magnitude. It should be emphasized that in the case
c.1, the tails with s.0 appear asymptoticallysj→`d.
With increasingc, s decreases and fluctuations grow. This
indicates that the tails come from fluctuation due to amplifi-
cation of large quantities. However, detailed analysis of the
tails remains for a future work.
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FIG. 6. (Color online) Double logarithmic plot ofjCsjd versus
j at a=0.0, b=0.9, andd=0.5. Number of particles isN=106 and
number of interactions isT=50N.
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